Menu

 

 

Quicklinks:

Documentation home

Introduction to phase diagrams

File structures, file names and line endings

Scripts

Calculating phase diagrams

Drawpd

av PT Calculations

activity-composition model documentation

Mineral abbreviations

Input file documentation

Output file documentation

Internally consistent dataset documentation

Methodology

References


page last updated: 28.11.2011

Output File Documentation

Overview

In addition to the output displayed in the operating window thermocalc writes information into a number of output files

Three output files are produced/overwritten each time thermocalc is run and each of these files contains different information in different formats. The three output files are:

tc-log: Contains a complete record of each calculation including a record of each prompt and the user input. In addition the log file may contain a description of the a-x models, the rbi code, and “readxyz” output depending if the scripts that control these are set at ‘yes’.  At typical  basic tc-log looks like:

[display/print with fixed width font (eg Monaco)]
[display/print with fixed width font (eg Monaco)]

THERMOCALC 3.30 running at 9.41 on Fri 11 Jan,2008
the main output is in the file, "tc-pelpt-o.txt"
other (eg drawpd) output is in the file, "tc-pelpt-dr.txt"

calcs use:
reading a-x datafile, "tc-NCKFMASHTO.txt"...
liq bi cd g opx mu ksp pl sp mt ilm hem and sill ru ky
q H2O
choose from: liq bi cd g opx mu ksp pl sp mt ilm hem and sill ru ky q H2O
q - automatically included (from script)
which phases : opx cd mt ksp liq ilm

variance of required equilibria :
0 = invariant
1 = univariant
2 = divariant
...
n = n-variant
variance : 5
you may set zero modal proportions, from:liq cd opx ksp mt ilm q
which to set : ksp
equilibia now effectively univariant (eg a line in PT)
calculate T at P (rather than P at T) ? yes

specification of PT window:
P range over which T of reactions to be calculated
P window: P low,high : 2 3
T window within which reactions expected to lie
T window: T low,high : (nothing input)
P window :2 <-> 3 kbar :P interval : 0.25
equilibrium state of order (for given P, T and compositions)

P(kbar) T(°C)   x(opx) y(opx) N(opx) f(opx)
2.5000 700.0000 0.5156 0.1519 0.4474 0.0064

P(kbar) T(°C)   x(ilm) Q(ilm)
2.5000 700.0000 0.8000 0.6988

composition (from script)
H2O   SiO2 Al2O3  CaO  MgO  FeO  K2O Na2O TiO2    O
5.84 68.24  8.71 0.27 3.54 8.69 2.89 0.55 0.70 0.55
<==================================================>
phases : liq, cd, opx, ksp, mt, ilm, (q)

--------------------------------------------------------------------
P(kbar) T(°C)    q(L) fsp(L)    na(L)   an(L)   ol(L)  x(L)  h2o(L) x(cd)  h(cd) x(opx) y(opx) N(opx)   f(opx) na(ksp)  ca(ksp)  x(mt)   y(mt)  z(mt) x(ilm)
2.00    816.9 0.3153  0.3614  0.1610 0.01429 0.01510 0.8296 0.2795 0.5009 0.2431 0.7142 0.1303 0.3129 0.003362 0.07407 0.009304 0.9609 0.07439 0.3639 0.8803
        Q(ilm)
        0.7608

mode     liq       cd       opx   ksp          mt        ilm         q
      0.6066   0.1938   0.08766     0     0.03034   0.009350   0.07231
--------------------------------------------------------------------
P(kbar) T(°C)    q(L) fsp(L) na(L)    an(L)  ol(L)   x(L)  h2o(L) x(cd)  h(cd) x(opx) y(opx) N(opx)   f(opx) na(ksp)  ca(ksp)  x(mt)   y(mt)  z(mt) x(ilm)
2.25    822.6 0.3105 0.3632 0.1610 0.01436 0.01597 0.8297 0.2805 0.4990 0.2508 0.7122 0.1374 0.3127 0.003522 0.07470 0.009136 0.9600 0.08068 0.3560 0.8768
       Q(ilm)
       0.7533

mode    liq      cd        opx   ksp        mt        ilm         q
     0.6031   0.1914   0.08790     0   0.03000   0.009643   0.07792
-------------------------------------------------------------------- 
P(kbar) T(°C)    q(L) fsp(L) na(L)   an(L)   ol(L)   x(L) h2o(L)  x(cd)  h(cd) x(opx) y(opx) N(opx)   f(opx) na(ksp)  ca(ksp)  x(mt)   y(mt)  z(mt) x(ilm)
2.50    828.2 0.3058 0.3649 0.1610 0.01443 0.01684 0.8298 0.2813 0.4970 0.2585 0.7101 0.1446 0.3126 0.003683 0.07537 0.008966 0.9591 0.08761 0.3478 0.8732
        Q(ilm)
        0.7456

mode    liq       cd       opx   ksp        mt       ilm          q
     0.6000   0.1889   0.08823     0   0.02966   0.009942   0.08331
--------------------------------------------------------------------
P(kbar)  T(°C)   q(L) fsp(L) na(L)   an(L)   ol(L)   x(L) h2o(L)  x(cd)  h(cd) x(opx) y(opx) N(opx)  f(opx)  na(ksp)  ca(ksp)  x(mt)   y(mt)  z(mt) x(ilm)
2.75    833.7 0.3012 0.3665 0.1610 0.01449 0.01769 0.8297 0.2821 0.4948 0.2663 0.7080 0.1521 0.3124 0.003847 0.07607 0.008795 0.9582 0.09529 0.3392 0.8695
        Q(ilm)
        0.7378

mode      liq     cd     opx    ksp        mt     ilm       q
       0.5971 0.1861 0.08866      0   0.02933 0.01025 0.08850
--------------------------------------------------------------------
P(kbar) T(°C)   q(L) fsp(L)  na(L)   an(L)   ol(L)   x(L) h2o(L)  x(cd)  h(cd) x(opx) y(opx) N(opx)   f(opx) na(ksp)  ca(ksp)  x(mt)  y(mt)  z(mt) x(ilm)
3.00    839.0 0.2968 0.3679 0.1610 0.01455 0.01853 0.8296 0.2829 0.4925 0.2741 0.7059 0.1598 0.3123 0.004012 0.07681 0.008624 0.9571 0.1039 0.3302 0.8656
       Q(ilm)
       0.7297

mode      liq       cd       opx ksp        mt      ilm         q
       0.5945   0.1832   0.08920   0   0.02900   0.01056   0.09351

 

tc-<name>-o: Contains just the basic results, showing P, T, x (in P/T-x pseudosections), the mineral compositions in terms of the defining compositional variables and the mineral modes if a bulk rock composition has been set. A tc-<name>-o file will look something like:

calcs use:

equilibrium state of order (for given P, T and compositions)

P(kbar)   T(°C)  x(opx)   y(opx)   N(opx)   f(opx)
2.5000 700.0000  0.5156   0.1519   0.4474   0.0064

P(kbar)     T(°C)   x(ilm)   Q(ilm)
2.5000   700.0000   0.8000   0.6988
composition (from script)
H2O   SiO2 Al2O 3 CaO  MgO  FeO  K2O Na2O TiO2    O
5.84 68.24  8.71 0.27 3.54 8.69 2.89 0.55 0.70 0.55
<==================================================>
phases : liq, cd, opx, ksp, mt, ilm, (q)
--------------------------------------------------------------------
P(kbar) T(°C)   q(L) fsp(L) na(L)   an(L)   ol(L)   x(L) h2o(L)  x(cd)  h(cd) x(opx) y(opx) N(opx)   f(opx) na(ksp) ca(ksp)   x(mt)   y(mt)  z(mt) x(ilm)
2.00   816.9 0.3153 0.3614 0.1610 0.01429 0.01510 0.8296 0.2795 0.5009 0.2431 0.7142 0.1303 0.3129 0.003362 0.07407 0.009304 0.9609 0.07439 0.3639 0.8803
      Q(ilm)
      0.7608

mode      liq       cd       opx ksp        mt        ilm        q
       0.6066   0.1938   0.08766   0   0.03034   0.009350   0.07231
--------------------------------------------------------------------
P(kbar) T(°C)  q(L) fsp(L)  na(L)   an(L)   ol(L)   x(L) h2o(L)  x(cd)  h(cd)  x(opx) y(opx) N(opx)   f(opx) na(ksp)  ca(ksp)  x(mt)   y(mt)  z(mt) x(ilm)
2.25   822.6 0.3105 0.3632 0.1610 0.01436 0.01597 0.8297 0.2805 0.4990 0.2508 0.7122  0.1374 0.3127 0.003522 0.07470 0.009136 0.9600 0.08068 0.3560 0.8768
       Q(ilm)
      0.7533

mode     liq       cd       opx ksp        mt       ilm          q
      0.6031   0.1914   0.08790   0   0.03000   0.009643   0.07792
--------------------------------------------------------------------
P(kbar) T(°C)  q(L) fsp(L)  na(L)   an(L)   ol(L)   x(L) h2o(L)  x(cd)  h(cd) x(opx) y(opx) N(opx)   f(opx) na(ksp)  ca(ksp)  x(mt)   y(mt)  z(mt) x(ilm)
2.50   828.2 0.3058 0.3649 0.1610 0.01443 0.01684 0.8298 0.2813 0.4970 0.2585 0.7101 0.1446 0.3126 0.003683 0.07537 0.008966 0.9591 0.08761 0.3478 0.8732
      Q(ilm)
      0.7456

mode     liq       cd       opx ksp        mt        ilm         q
      0.6000   0.1889   0.08823   0   0.02966   0.009942   0.08331
--------------------------------------------------------------------
P(kbar) T(°C)  q(L) fsp(L)  na(L)   an(L)   ol(L)   x(L) h2o(L)  x(cd)  h(cd) x(opx) y(opx) N(opx)  f(opx)  na(ksp)  ca(ksp)  x(mt)   y(mt)  z(mt) x(ilm)
2.75   833.7 0.3012 0.3665 0.1610 0.01449 0.01769 0.8297 0.2821 0.4948 0.2663 0.7080 0.1521 0.3124 0.003847 0.07607 0.008795 0.9582 0.09529 0.3392 0.8695
      Q(ilm)
      0.7378

mode     liq       cd       opx ksp        mt       ilm         q
      0.5971   0.1861   0.08866   0   0.02933   0.01025   0.08850
--------------------------------------------------------------------
P(kbar) T(°C) q(L) fsp(L) na(L) an(L) ol(L) x(L) h2o(L) x(cd) h(cd) x(opx) y(opx) N(opx) f(opx) na(ksp) ca(ksp) x(mt) y(mt) z(mt) x(ilm)
3.00 839.0 0.2968 0.3679 0.1610 0.01455 0.01853 0.8296 0.2829 0.4925 0.2741 0.7059 0.1598 0.3123 0.004012 0.07681 0.008624 0.9571 0.1039 0.3302 0.8656
      Q(ilm)
      0.7297

mode     liq       cd       opx ksp        mt       ilm         q
      0.5945   0.1832   0.08920   0   0.02900   0.01056   0.09351

 

tc-<name>-dr:  Contains just the information needed in drawpd, formatted as a simple list with a standard drawpd header. A tc-<name>-dr file  for a P-T pseudosection will look something like:


% ------------------------------
u<k> liq cd opx mt ilm - ksp

begin  end

2.00  816.9 % ksp = 0
2.25  822.6 % ksp = 0
2.50  828.2 % ksp = 0
2.75  833.7 % ksp = 0
3.00  839.0 % ksp = 0

 

Understanding the output

There is potentially an enormous amount of information that thermocalc could display on the screen and place in the output files, but there are only a few key pieces of information typically required. The key information you need for seeing what the calculated equilibria look like is given in the operating window. Data formatted for drawpd and other information is printed into the output files if needed. Below is a (incomplete) overview of the main data output from thermocalc. I start with the information output in the operating window as this is the first information you see when you run thermocalc.

Output in the operating window

The main information given in the operating window are P & T, x (for T-x/P-x pseudosections), the mineral modes and mineral compositions. Several other bits of information like the uncertainties on the calculation, information about states of order, values of chemical potential can be printed here via scripts if needed. The information given can be divided into two groups; that given at the beginning of each run; and, that given at each point in the calculation.

Information given at the beginning of each run includes (depending in part on what scripts are used):

Bulk rock composition or composition range

e.g.

composition (from script)
   H2O  SiO2 Al2O3   CaO   MgO   FeO   K2O  Na2O
  5.92 69.11  8.82  0.27  3.59  8.80  2.93  0.56

composition
pos        1     6    11    16    21    26   (in this range)
prop       0 0.200 0.400 0.600 0.800 1.000   (of overall range)
   H2O  5.92  5.71  5.50  5.30  5.09  4.88
  SiO2 69.11 68.83 68.54 68.26 67.97 67.69
 Al2O3  8.82  9.83 10.84 11.84 12.85 13.86
   CaO  0.27  0.26  0.26  0.25  0.25  0.24
   MgO  3.59  4.29  4.99  5.68  6.38  7.08
   FeO  8.80  7.67  6.53  5.40  4.26  3.13
   K2O  2.93  2.83  2.72  2.62  2.51  2.41
  Na2O  0.56  0.59  0.62  0.65  0.68  0.71

The phases used

e.g.

<==================================================>
phases : bi, cd, g, liq, ksp, pl, sill, q

Equilibrium state of order

Where the calculations involve a phase with an order parameter, thermocalc can pre-solve for the state of order via using the script “usecalcq yes”. This results in the equilibrium state of order being solved for the other input parameters at the P & T of the middle of the use-defined P-T window.  Thus, at the beginning of each run the state of order is printed e.g.

equilibrium state of order (for given P, T and compositions)

   P(kbar)     T(°C)    x(opx)    y(opx)    Q(opx)    f(opx)
    2.5000  700.0000    0.5156    0.1519    0.4474    0.0064

   P(kbar)     T(°C)    x(ilm)    Q(ilm)
    2.5000  700.0000    0.8000    0.6988

This/these calculated state(s) of order is/are then used as a starting guess(es).

On occasion, the state of order of one or more phases cannot be solved prompting the message:

couldn't solve for state of order of chl
(but this may not matter)

when this occurs, the default starting guesses in the a-x file or script file  for all order parameters are used. This will not affect the result of the overall calculation if one is found, but it may affect whether a result will be found.

Information given at each solution in a run (depends on what scripts are turned on)

P-T-x: The P & T conditions for each calculation are the first bits of information give in each calculation result.

For T-x and P-x calculations there is additional information given in each calculation result regarding where on the x axis the answer lies. For example, the T-x output below (truncated):

--------------------------------------------------------------------
 P(kbar)     T(°C)    x(bi)    y(bi)    Q(bi)    x(cd)    h(cd)     x(g)     z(g)
    6.40     773.7   0.4670   0.4901   0.1230   0.2951   0.6456   0.7173  0.02664  

  mode       bi       cd        g      liq      ksp       pl     sill        q
 0.360   0.1872        0   0.1260   0.1539  0.09574 2.970e-5  0.07955   0.3575
--------------------------------------------------------------------

includes the x value (between 0 and 1) at he beginning of the mineral modes line (highlighted)

Mineral compositions: Mineral compositions in thermocalc are given as the defining composition variables. For example in an orthopyroxene the composition is given as

x(opx)   y(opx)   Q(opx)   f(opx)
0.7101   0.1446   0.3126 0.003683

these compositions can be converted into endmember mole proportions and site fractions by substituting (manually) these values into the formulas that define the endmember mole proportions and site fractions in the a-x files.  The mineral compositions can also be produced as simple oxide proportions and printed in the log file by using the rbi script.

Of the purely bulk mineral composition variables (ie ignoring the order parameters), there are two basic types. These are the bulk proportion based variables (e.g x(opx) = Fe/ (Fe + Mg)) and the site fraction variables (e.g. y(opx) = x(Al,M1)).  There are some important differences between these when comparing natural data with modelled compositions. 

The proportional variables are independent of the number of oxygens on which an analysis is presented so can be directly compared with the same proportions based on cation numbers from probe analyses.  In contrast, the values of the site fraction numbers can only be directly compared to analyses if both use mineral formulae based on the same number of oxides. While this will be typically the case, as most mineral formulae are given in a standardised way (ie calculated with a standard number of oxygens), not all minerals are.  For example, the mica formulae in thermocalc use an 11-oxygen basis whereas most mica analyses are calculated on a 22-oxygen basis. 

A further consideration in comparing site fraction numbers to, say, total cations in a mineral analysis involves the number of sites that a given element resides and whether any sites in a mineral is completely occupied by that element or not considered in the model (information on formulae used in thermocalc can be output or taken from Holland & Powell 1998). For example, with the orthopyroxene composition above, the model used does not consider the tetrahedral sites. In this model the M1 Al and Fe3+ are both charge balanced by Al on the tetrahedral site. Thus using the y(opx) and f(opx) numbers above, the total Al for this opx on a 6-oxygen basis is  Al(tot) = 2y + f = 0.292883.

Modes: Modes in thermocalc are normalised mole proportions. Each phase is normalised to a one oxide basis. The reason this is done is because each phase contains a different oxide mole sum, and by normalising to the same oxide mole sum the differences are removed and the mole proportion modes more closely reflect volume percent. The modes still differ slightly from volume percent due to there being differences in the normalised molar volume of each phase.

For example, the oxide mole sum of quartz is 1 (ie 1SiO2) but the oxide mole sum of garnet is 7 ( eg for pure almandine it is 3FeO + 1Al2O3 + 3SiO2). Each phase is divided by its oxide sum to normalise the sum to 1. Obviously, in complex minerals this process is a little more complex, especially where there are paired substitutions (eg tschermaks substitution). On a non-normalised basis the molar volume of almandine and quartz are very different (11.511 J/bar & 2.269 J/bar at standard state) respectively, so the non-normalised modes would be very different to observed volume proportions. With the normalisation process the normalised molar volumes for almandine and quartz become 1.644 J/bar and 2.269 J/bar respectively.  Thus, now the calculated modes differ from volume proportions only by the differences in normalised molar volume. 

Uncertainties: The uncertainties on any calculation can be output using the script “calcsdnle yes”. Using this script outputs a 1sigma uncertainty on the P-T conditions, mineral compositions and mineral modes.  This uncertainty results from the propagation of the uncertainties on the enthalpy of each endmember. Thus no uncertainties are assigned to any other aspect of the calculation (eg uncertainties on the W’s). Thus, these uncertainties should be considered an minimum uncertainty. a typical calculation with uncertainties is shown below. When quoting uncertainties, 2sigma values should be used (ie double these 1 sigma numbers).

calcs use:

equilibrium state of order (for given P, T and compositions)

P(kbar)     T(°C)   x(opx)   y(opx)   N(opx)   f(opx)
2.5000   700.0000   0.5156   0.1519   0.4474   0.0064

P(kbar)     T(°C)   x(ilm)   Q(ilm)
2.5000   700.0000   0.8000   0.6988
composition (from script)
H2O   SiO2   Al2O3   CaO   MgO   FeO   K2O   Na2O   TiO2   O
5.84 68.24    8.71  0.27  3.54  8.69  2.89   0.55   0.70 0.55
<==================================================>
phases : liq, cd, opx, ksp, mt, ilm, (q)
--------------------------------------------------------------------
P(kbar) T(°C)  q(L)  fsp(L)  na(L)  an(L)   ol(L)   x(L) h2o(L)  x(cd)  h(cd) x(opx) y(opx) N(opx)   f(opx) na(ksp)  ca(ksp)  x(mt)   y(mt)  z(mt) x(ilm)
2.00   816.9 0.3153 0.3614 0.1610 0.01429 0.01510 0.8296 0.2795 0.5009 0.2431 0.7142 0.1303 0.3129 0.003362 0.07407 0.009304 0.9609 0.07439 0.3639 0.8803
sd 5  0.00871 0.00489 -1.00 0.000193 0.00124 0.00281 0.00366 0.00546 0.0201 0.00445 0.00420 0.00355 0.000132 0.00222 0.000415 0.00290 0.00374 0.0331 0.00535
       Q(ilm)
       0.7608
   sd 0.00813

mode  liq          cd       opx     ksp        mt        ilm         q
      0.6066   0.1938   0.08766       0   0.03034   0.009350   0.07231
sd   0.00977  0.00409   0.00310 0.00201   0.00133    0.00976
--------------------------------------------------------------------
P(kbar) T(°C)   q(L)  fsp(L)  na(L)  an(L)   ol(L)   x(L)  h2o(L)    x(cd)  h(cd) x(opx)  y(opx) N(opx) f(opx ) na(ksp)  ca(ksp)  x(mt)   y(mt)  z(mt) x(ilm)
2.25    822.6 0.3105 0.3632 0.1610 0.01436 0.01597 0.8297   0.2805  0.4990 0.2508 0.7122 0.1374 0.3127 0.003522 0.07470 0.009136 0.9600 0.08068 0.3560 0.8768
sd 5 0.00852 0.00482 -1.00 0.000191 0.00129 0.00279 0.00359 0.00556 0.0203 0.00445 0.00440 0.00349 0.000135 0.00222 0.000405 0.00287 0.00412 0.0324 0.00546
      Q(ilm)
      0.7533
  sd 0.00835

mode   liq     cd       opx     ksp         mt     ilm        q
    0.6031  0.1914  0.08790       0    0.03000 0.009643 0.07792
sd 0.00950 0.00439  0.00324 0.00195    0.00129  0.00942
--------------------------------------------------------------------
P(kbar) T(°C)   q(L)  fsp(L) na(L)   an(L)   ol(L)   x(L) h2o(L)   x(cd)  h(cd) x(opx) y(opx) N(opx)  f(opx) na(ksp)  ca(ksp)  x(mt)   y(mt)  z(mt) x(ilm)
2.50    828.2 0.3058 0.3649 0.1610 0.01443 0.01684 0.8298 0.2813 0.4970 0.2585 0.7101 0.1446 0.3126 0.003683 0.07537 0.008966 0.9591 0.08761 0.3478 0.8732
sd 5 0.00834 0.00477 -1.00 0.000188 0.00134 0.00278 0.00352 0.00569 0.0206 0.00447 0.00461 0.00344 0.000138 0.00222 0.000395 0.00285 0.00457 0.0317 0.00557
      Q(ilm)
     0.7456
sd  0.00860

mode     liq       cd       opx     ksp        mt         ilm         q
      0.6000   0.1889   0.08823       0   0.02966    0.009942   0.08331
sd   0.00925  0.00471   0.00339 0.00189   0.00125     0.00911
--------------------------------------------------------------------
P(kbar) T(°C)   q(L)   fsp(L)  na(L)    an(L)    ol(L)    x(L) h2o(L)  x(cd)  h(cd) x(opx) y(opx) N(opx)  f(opx)  na(ksp)  ca(ksp)  x(mt)  y(mt)  z(mt) x(ilm)
2.75   833.7  0.3012  0.3665  0.1610  0.01449  0.01769  0.8297 0.2821 0.4948 0.2663 0.7080 0.1521 0.3124 0.003847 0.07607 0.008795 0.9582 0.09529 0.3392 0.8695
sd 5 0.00817 0.00472 -1.00 0.000187 0.00139 0.00277 0.00346 0.00582 0.0209 0.00448 0.00481 0.00340 0.000141 0.00223 0.000386 0.00282 0.00510 0.0310 0.00568
      Q(ilm)
      0.7378
sd   0.00885

mode     liq       cd        opx      ksp         mt        ilm          q
      0.5971    0.1861   0.08866        0    0.02933    0.01025    0.08850
sd   0.00902   0.00505   0.00357  0.00184    0.00121    0.00882
--------------------------------------------------------------------
P(kbar) T(°C)    q(L) fsp(L)   na(L)     an(L)   ol(L)    x(L)  h2o(L)  x(cd)  h(cd) x(opx) y(opx) N(opx)   f(opx)  na(ksp) ca(ksp)  x(mt)  y(mt)  z(mt) x(ilm)
3.00   839.0  0.2968  0.3679  0.1610  0.01455  0.01853  0.8296  0.2829 0.4925 0.2741 0.7059 0.1598 0.3123 0.004012 0.07681 0.008624 0.9571 0.1039 0.3302 0.8656
sd 5 0.00801 0.00468   -1.00 0.000185 0.00143  0.00277 0.00340 0.00596 0.0211 0.00451 0.00503 0.00336 0.000144 0.00223 0.000376 0.00279 0.00574 0.0303 0.00580
      Q(ilm)
      0.7297
sd   0.00912

mode      liq        cd        opx     ksp         mt        ilm          q
       0.5945    0.1832    0.08920       0    0.02900    0.01056    0.09351
sd    0.00883   0.00542    0.00375 0.00178    0.00118    0.00854

Other information that can be output includes chemical potentials
--------------------------------------------------------------------
 P(kbar)     T(?C)    x(cd)    h(cd)   x(opx)   y(opx)   Q(opx)     q(L)
    3.00     837.7   0.5564   0.2748   0.7589   0.1769   0.2681   0.2956

  mode       cd      opx      liq      ksp        q
         0.1727   0.1492   0.6059        0  0.07221

  mu        H2O     SiO2    Al2O3      CaO      MgO      FeO      K2O     Na2O
        -409.56  -987.94 -1797.29  -828.81  -700.73  -375.21  -982.17  -919.71

 

Output in the tc-<name>-o file

The out put in this file is the same as on the screen but without the questions and answers regarding P-T window assemblage variance etc.

Output in the tc-log file

In addition to the log of the calculation, the log file can additionally contain extra information depending on what scripts you use. This includes the a-x models, rbi output and printxyz output.

For example using the script “incax” produces a printout of the a-x model for each phase considered in a calculation such as that for biotite below.

--------------------------------------
bi

 starting guesses
   x(bi) =     0.7101
   y(bi) =     0.5659
   Q(bi) =    0.06370

 site fractions
   x(Al,M1) = y
   x(Fe,M1) = x (1 - y) + 2/3 Q
   x(Mg,M1) = (1 - x) (1 - y) + (-2/3 Q)
   x(Fe,M2) = x - 1/3 Q
   x(Mg,M2) = 1 - x + 1/3 Q
   x(Al,T1) = 1/2 + 1/2 y
   x(Si,T1) = 1/2 - 1/2 y

 proportions
   phl = (1 - x) (1 - y) + (-2/3 Q)
   ann = x - 1/3 Q
   east = y
   obi = (-x) y + Q

 ideal mixing actvities
   phl = 4 x(Mg,M1) x(Mg,M2)^2 x(Al,T1) x(Si,T1)
   ann = 4 x(Fe,M1) x(Fe,M2)^2 x(Al,T1) x(Si,T1)
  east =   x(Al,M1) x(Mg,M2)^2 x(Al,T1)^2
   obi = 4 x(Fe,M1) x(Mg,M2)^2 x(Al,T1) x(Si,T1)

 non-ideality by symmetric formalism
  W(phl,ann) = 12.0
  W(phl,east) = 10.0
  W(phl,obi) = 4.0
  W(ann,east) = 3.0
  W(ann,obi) = 8.0
  W(east,obi) = 7.0

 dependent ("make") end-members
  obi = 2/3 phl + 1/3 ann

 DQF increments
  ann = -3.00
  obi = -6.00

The script “printxyz” produces a starting guess list such as this

% calculated at P =   4.8; T =  732
readxyz x(bi)         0.7101
readxyz y(bi)         0.5659
readxyz Q(bi)        0.06370
readxyz x(cd)         0.4700
readxyz h(cd)         0.5912
readxyz x(g)          0.8558
readxyz z(g)         0.01678
readxyz q(L)          0.1670
readxyz fsp(L)        0.3044
readxyz na(L)         0.5069
readxyz an(L)       0.006007
readxyz ol(L)       0.002631
readxyz x(L)          0.8205
readxyz h2o(L)        0.5042
readxyz na(ksp)       0.2799
readxyz ca(ksp)      0.01105
readxyz ca(pl)        0.2573
readxyz k(pl)        0.05377

More details about these and other scripts is in the script documentation.

output in the tc-<name>-dr file

The output in the tc-<name>-dr file is pretty straightforward and is largely controlled by the typ of calcuation being done. For example for a P-T pseudosection only P & T are included, but P, T & X are included for a T-x pseudosection.